CO

    Show

             Abstract

Abstract Details

Abstract Details


تأثیر میزان تسلیح خارجی بر عملکرد تیرهای بتن مسلح تقویت شده با مواد پایه سیمانی مسلح الیافی

Major Topic: Concrete Structures|سازه های بتنی


Abstract

هدف از پژوهش حاضر بررسی تأثیر میزان تسلیح خارجی بر عملکرد تیرهای بتن مسلح تقویت شده با مواد پایه سیمانی مسلح الیافی (FRCM) می‌باشد. بدین منظور چهار تیر بتن مسلح به عرض 200 میلی‌متر، ارتفاع 300 میلی‌متر و طول 2200 میلی‌متر ساخته شد. تیرهای ساخته شده شامل یک تیر بدون تقویت خارجی (تیر کنترل) و سه تیر تقویت شده با یک، دو و سه لایه FRCM می‌باشد. نمونه‌های ساخته شده پس از تقویت خارجی تحت آزمایش خمش چهار نقطه‌ای قرار گرفتند. نتایج پژوهش نشان می‌دهد که تقویت با یک، دو و سه لایه FRCM منجر به افزایش ظرفیت باربری به ترتیب به میزان 8%، 22% و 33% و کاهش تغییر مکان وسط دهانه در لحظه باربری حداکثر به میزان 5%، 46% و 54% در مقایسه با تیر بدون تقویت خارجی می‌گردد. همچنین مود گسیختگی مشاهده شده در تیرهای تقویت شده با یک و دو لایه FRCM به صورت پارگی شبکه FRCM و مود گسیختگی مشاهده شده در تیر تقویت شده با سه لایه FRCM به صورت جداشدگی شبکه FRCM به همراه پوشش بتن روی میلگردهای کششی از وجه کششی تیر (قلوه‌کن شدن بتن) می‌باشد.

Keywords

تیر; بتن مسلح; تقویت; FRCM; قلوه‌کن


Highlighs

  • هدف از پژوهش حاضر بررسی تأثیر میزان تسلیح خارجی بر عملکرد تیرهای بتن مسلح تقویت شده با مواد پایه سیمانی مسلح الیافی (FRCM) می‌باشد.
  • تقویت با یک، دو و سه لایه FRCM منجر به افزایش ظرفیت باربری به ترتیب به میزان 8%، 22% و 33% و کاهش تغییر مکان وسط دهانه در لحظه باربری حداکثر به میزان 5%، 46% و 54% در مقایسه با تیر بدون تقویت خارجی می‌گردد.
  • مقایسه ظرفیت باربری آزمایشگاهی با ظرفیت باربری تئوری به دست آمده بر اساس آیین‌نامه ACI-549.4R-13 نشان می‌دهد که آیین‌نامه ACI-549.4R-13 ظرفیت باربری را به نحو مناسبی تخمین می‌زند.

Referencrs

  1. Sabzi J, Esfahani MR, Ozbakkaloglu T, Farahi B. (2020),“Effect of concrete strength and longitudinal reinforcement arrangement on the performance of reinforced concrete beams strengthened using EBR and EBROG methods,” Engineering Structures, 205, 110072.

  2. Sabzi J, Esfahani MR. (2018),“Effects of tensile steel bars arrangement on concrete cover separation of RC beams strengthened by CFRP sheets,” Construction and Building Materials, 162, 470-9.

  3. Farahi B, Esfahani M, Sabzi J. (2019),“Experimental investigation on the behavior of reinforced concrete beams retrofitted with NSM-SMA/FRP,” Amirkabir Journal of Civil Engineering, 51, 685-98.

  4. Sabzi J, Esfahani M. (2018),“ Flexural Behavior of RC Beams Strengthened by CFRP Sheets in the Beams with low and high Reinforcement Ratios,” Amirkabir Journal of Civil Engineering, 50, 907-18.

  5. Khorasani AM, Esfahani MR, Sabzi J. (2019),“The effect of transverse and flexural reinforcement on deflection and cracking of GFRP bar reinforced concrete beams,” Composites Part B: Engineering, 161, 530-546.

  6. Arabshahi A, Tavakol M, Sabzi J, Gharaei-Moghaddam N. (2022),“Prediction of the effective moment of inertia for concrete beams reinforced with FRP bars using an evolutionary algorithm,” Structures, 35, 684-705.

  7. Park J, Park S-K, Hong S. (2021),“Evaluation of Flexural Behavior of Textile-Reinforced Mortar-Strengthened RC Beam Considering Strengthening Limit,” Materials, 14, 6473.

  8. Ebead U, Shrestha KC, Afzal MS, El Refai A, Nanni A. (2017),“Effectiveness of fabric-reinforced cementitious matrix in strengthening reinforced concrete beams,” Journal of Composites for Construction, 21, 04016084.

  9. Ebead U, El-Sherif H. (2019),“Near surface embedded-FRCM for flexural strengthening of reinforced concrete beams,” Construction and Building Materials, 204,166-76.

  10. Zhu J-h, Su M-n, Huang J-y, Ueda T, Xing F. (2018),“The ICCP-SS technique for retrofitting reinforced concrete compressive members subjected to corrosion,” Construction and Building Materials, 167, 669-79.

  11. Colajanni P, De Domenico F, Recupero A, Spinella N. (2014),“Concrete columns confined with fibre reinforced cementitious mortars: experimentation and modelling,” Construction and Building Materials, 52, 375-84.

  12. Ortlepp R, Ortlepp S. (2017),“Textile reinforced concrete for strengthening of RC columns: A contribution to resource conservation through the preservation of structures,” Construction and Building Materials, 132, 150-60.

  13. D’Ambrisi A, Focacci F. (2011),“Flexural strengthening of RC beams with cement-based composites,” Journal of Composites for Construction, 15, 707-20.

  14. Escrig C, Gil L, Bernat-Maso E. (2017),“Experimental comparison of reinforced concrete beams strengthened against bending with different types of cementitious-matrix composite materials,” Construction and Building Materials, 137, 317-29.

  15. Yuan F, Chen M, Pan J. (2020),“Flexural strengthening of reinforced concrete beams with high-strength steel wire and engineered cementitious composites,” Construction and Building Materials, 254, 119284.

  16. Jabr A, El-Ragaby A, Ghrib F. (2017)“Effect of the fiber type and axial stiffness of FRCM on the flexural strengthening of RC beams,” Fibers, 5, 2.

  17. ASTM E8/E8M. (2009),“Standard test methods for tension testing of metallic materials,” American Society for Testing and Materials, West Conshohocken, PA.

  18. ASTM C496/C496M-11. (2011),“Standard test method for splitting tensile strength of cylindrical concrete specimens,” ASTM International, West Conshohocken, PA.

  19. ASTM C109 / C109M-16a. (2016),“Standard test method for compressive strength of hydraulic cement mortars (Using 2 in. or [50-mm] Cube Specimens),” ASTM International, West Conshohocken, PA.

  20. ACI 549.4R. (2013),“ Guide to design and construction of externally bonded fabric-reinforced cementitious matrix systems for repair and strengthening concrete and masonry structures,” Farmington Hills, MI.

  21. ACI 318. (2014),“Building code requirements for structural concrete and commentary,” Farmington Hills: American Concrete Institute.

Copyright © 2017, Accepted in 13NCCE Conference

Top