Show
Abstract
در نظر گرفتن میانقاب در قاب های ساختمانی نیاز به محاسبات و المان های پیچیده دارد لذا در تحلیل و طراحی قاب های ساختمانی معمولا از اثر میانقاب صرف نظر میشود و میانقاب ها را اجزای غیر سازه ای در نظر میگیرند. با وجود اینکه میانقاب ها برخصوصیات رفتاری سازه از جمله مقاومت، جابجایی و سختی موثر هستند و در نظر گرفتن آنها میتواند پاسخ سازه را تحت بار جانبی مانند زلزله و باد تغییر دهد، ولی آئین نامه های طراحی فقط این اثر را در دوره تناوب سازه در نظر می گیرند. در این مطالعه با استفاده از حدود 250 رکورد زلزله و اعمال آنها به سازه بتنی در تحلیل غیرخطی دینامیکی پارامتر های خسارت و جابجایی برای سازه محاسبه شده اند . برای هر رکورد زلزله 18 مشخصه محاسبه شد. سپس نمودار هایی ترسیم شده است که رابطه ای بین پارامتر های رکورد های هر زلزله با خسارت و جابجایی را نشان میدهد. همبستگی مناسبی بین اکثر مشخصه ها و پاسخ غیر خطی سازه مشاهده شد. لذا به جای مدلسازی المان های پیچیده و یا تحلیلهای غیر خطی زمان بر با استفاده از ترکیبی از مشخصه های زلزله اثر میانقاب بر پاسخ سازه را میتوان پیش بینی کرد.
میانقاب; قاب خمشی; تحلیل دینامیکی غیرخطی; بتن مسلح
T. Paulay and M. N. Priestley, Seismic design of reinforced concrete and masonry buildings. Wiley New York, 1992.
K. M. Amanat and E. Hoque, "A rationale for determining the natural period of RC building frames having infill," Engineering structures, vol. 28, no. 4, pp. 495-502, 2006.
R. J. Mainstone, "SUMMARY OF PAPER 7360. ON THE STIFFNESS AND STRENGTHS OF INFILLED FRAMES," Proceedings of the Institution of Civil Engineers, vol. 49, no. 2, p. 230, 1971.
A. Fiore, A. Netti, and P. Monaco, "The influence of masonry infill on the seismic behaviour of RC frame buildings," Engineering structures, vol. 44, pp. 133-145, 2012.
حیدری, توکلی, شیوا, توکلی, and داود, "اثر ضخامت و تعداد دهانهی میانقاب با مصالح بنایی بر رفتار لرزهای ساختمان های بتنی," مصالح و سازه های بتنی, vol. 1, no. 2, pp. 19-33, 2016.
V. K. Gudipati and E. J. Cha, "Surrogate modeling for structural response prediction of a building class," Structural Safety, vol. 89, p. 102041, 2021.
S. Polyakov, "„Masonry in Framed Buildings; An Investigations into the Strength and Stiffness of Masonry Infilling”, Moscow (In English translation), Fordította Caims GL 1963-ban," National Lending Library of Science and Technology, 1957.
E. Akın, E. Canbay, B. Binici, and G. Özcebe, "Testing and analysis of infilled reinforced concrete frames strengthened with CFRP reinforcement," Journal of reinforced plastics and composites, vol. 30, no. 19, pp. 1605-1620, 2011.
M. M. Kose, "Parameters affecting the fundamental period of RC buildings with infill walls," Engineering Structures, vol. 31, no. 1, pp. 93-102, 2009.
A. Brodsky, O. Rabinovitch, and D. Z. Yankelevsky, "Effect of masonry joints on the behavior of infilled frames," Construction and Building Materials, vol. 189, pp. 144-156, 2018.
Q. Peng, X. Zhou, and C. Yang, "Influence of connection and constructional details on masonry-infilled RC frames under cyclic loading," Soil Dynamics and Earthquake Engineering, vol. 108, pp. 96-110, 2018.
A. D. Dautaj, Q. Kadiri, and N. Kabashi, "Experimental study on the contribution of masonry infill in the behavior of RC frame under seismic loading," Engineering Structures, vol. 165, pp. 27-37, 2018.
R. Allouzi and A. Irfanoglu, "Development of new nonlinear dynamic response model of reinforced concrete frames with infill walls," Advances in Structural Engineering, vol. 21, no. 14, pp. 2154-2168, 2018.
Z. Andrei, "Influence of openings on the behaviour of masonry infill frames," in 2nd International Conference on Advances in Engineering Sciences and Applied Mathematics (ICAESAM’2014), 2014, pp. 4-5.
C. B. de Carvalho Bello, G. Boscato, E. Meroi, and A. Cecchi, "Non-linear continuous model for three leaf masonry walls," Construction and Building Materials, vol. 244, p. 118356, 2020.
H. Elwardany, A. Seleemah, and R. Jankowski, "Seismic pounding behavior of multi-story buildings in series considering the effect of infill panels," Engineering Structures, vol. 144, pp. 139-150, 2017.
M. L. Moretti, "Seismic design of masonry and reinforced concrete infilled frames: a comprehensive overview," American Journal of Engineering and Applied Sciences, vol. 8, no. 4, p. 748, 2015.
A. Rooshenas, "Comparing pushover methods for irregular high-rise structures, partially infilled with masonry panels," in Structures, 2020, vol. 28: Elsevier, pp. 337-353.
S. Shan, S. Li, M. M. Kose, H. Sezen, and S. Wang, "Effect of partial infill walls on collapse behavior of reinforced concrete frames," Engineering Structures, vol. 197, p. 109377, 2019.
J. Ghosh, J. E. Padgett, and L. Dueñas-Osorio, "Surrogate modeling and failure surface visualization for efficient seismic vulnerability assessment of highway bridges," Probabilistic Engineering Mechanics, vol. 34, pp. 189-199, 2013.
A. Kaveh, M. Fahimi-Farzam, and M. Kalateh-Ahani, "Optimum design of steel frame structures considering construction cost and seismic damage," Smart Struct Syst, vol. 16, no. 1, pp. 1-26, 2015.
Z. Wang, N. Pedroni, I. Zentner, and E. Zio, "Computation of seismic fragility curves using artificial neural network metamodels," in 12th International Conference on Structural Safety and Reliability (ICOSSAR 2017), 2017, pp. 1525-1534.
O. Möller, R. O. Foschi, J. P. Ascheri, M. Rubinstein, and S. Grossman, "Optimization for performance-based design under seismic demands, including social costs," Earthquake Engineering and Engineering Vibration, vol. 14, no. 2, pp. 315-328, 2015.
B. Sudret and C. V. Mai, "Computing seismic fragility curves using polynomial chaos expansions," in 11th International conference on structural safety and reliability (ICOSSAR 2013), 2013: Eidgenössische Technische Hochschule Zürich.
V. Dubourg, B. Sudret, and J.-M. Bourinet, "Reliability-based design optimization using kriging surrogates and subset simulation," Structural and Multidisciplinary Optimization, vol. 44, no. 5, pp. 673-690, 2011.
P. Morandi, S. Hak, and G. Magenes, "Performance-based interpretation of in-plane cyclic tests on RC frames with strong masonry infills," Engineering Structures, vol. 156, pp. 503-521, 2018.
C. Del Gaudio, M. T. De Risi, P. Ricci, and G. M. Verderame, "Empirical drift-fragility functions and loss estimation for infills in reinforced concrete frames under seismic loading," Bulletin of Earthquake Engineering, vol. 17, no. 3, pp. 1285-1330, 2019.
F. Karami and M. Izadpanah, "Incremental inelastic dynamic damage analysis of MRRCFs infilled with masonry panels," Journal of Building Engineering, vol. 44, p. 103282, 2021.
T. Liauw and K. Kwan, "Plastic theory of infilled frames with finite interface shear strength," Proceedings of the Institution of Civil Engineers, vol. 75, no. 4, pp. 707-723, 1983.
T. Liauw and K. Kwan, "PLASTIC THEORY OF NON INTEGRAL INFILLED FRAMES," Proceedings of the Institution of Civil Engineers, vol. 75, no. 3, pp. 379-396, 1983.
C. Chrysostomou and P. Asteris, "On the in-plane properties and capacities of infilled frames," Engineering structures, vol. 41, pp. 385-402, 2012.
A. Saneinejad and B. Hobbs, "Inelastic design of infilled frames," Journal of Structural Engineering, vol. 121, no. 4, 1995.
M. Trifunac and E. Novikova, "State of the art review on strong motion duration," in Proceedings of the Tenth European conference on earthquake engineering, Vienna, Austria, 1994, vol. 1, pp. 131-140.