CO

    Show

             Abstract

Abstract Details

Abstract Details


مقایسه رفتار چرخه ای میراگرهای فولادی تسلیمی با اشکال مختلف شکاف

Major Topic: Seismic Analysis And Design Of Steel Structures|تحلیل و طراحی لرزه ای سازه های فولادی


Abstract

در این پژوهش، رفتار چرخه ای میراگرهای فولادی تسلیمی شکاف دار مورد بررسی قرار می گیرد. میراگرهای مورد مطالعه دارای شکاف مستطیلی، بیضوی و نامنشوری می باشند. میراگرهای موردنظر به طول 420، عرض 320 و ضخامت 6 میلیمتر در نظر گرفته شده اند. از هر نوع از میراگرهای شکاف دار 3 مدل عددی با ابعاد شکاف متفاوت به صورت عددی در نرم افزار آباکوس مدلسازی و رفتار چرخه ای آن ها با یکدیگر مقایسه می گردد. سپس میراگرهای فولادی دارای مقاومت بالاتر از هر نوع انتخاب و مقدار جذب انرژی چرخه ای آن ها با یکدیگر مقایسه می گردد. شایان ذکر است برای مقایسه مقدار جذب انرژی نمونه های مورد نظر از ضریب استهلاک انرژی استفاده می شود.

Keywords

میراگر فولادی تسلیمی; میراگر شکاف¬دار; بارگذاری چرخه¬ای; ضریب استهلاک انرژی; نرم¬افزار آباکوس


Highlighs

  • بررسی رفتار چرخه ای میراگرهای فولادی تسلیمی شکاف دار
  • میراگرهای مورد مطالعه دارای شکاف مستطیلی، بیضوی و نامنشوری شکل
  • مجموع ضرایب استهلاک انرژی میراگر شکاف دار بیضوی شکل نسبت به دو میراگر دیگر بالاتر می باشد.

Referencrs

  1. [1] K. Tsai, H. Chen, C. Hong, and Y. Su, “Design of Steel Triangular Plate Energy Absorbers for Seismic‐Resistant Construction”, Earthquake Spectra, vol. 9(3), pp. 505–528, 1993.

  2. [2] M. Shih, and W. Sung, “A model for hysteretic behavior of rhombic low yield strength steel added damping and stiffness”, Computers & Structures, vol. 83, pp. 895–908, 2005.

  3. [3] A. Tena-Colunga, “Mathematical modelling of the ADAS energy dissipation device”, Engineering Structures, vol. 19(10), pp. 811-821, 1997.

  4. [4] A. Benavent-Climent, S. OH, and H. Akiyama, “Ultimate energy absorption capacity of slit-type steel plates subjected to shear deformations”, Journal of Structural and Construction Engineering, vol. 503, pp. 139-147, 1998.

  5. [5] R. Chana, and F. Albermania, “Experimental study of steel slit damper for passive energy dissipation”, Engineering Structures, vol. 30, pp. 1058–1066, 2008.

  6. [6] K. Ghabraie, R. Chan, X. Huang, and Y. Min Xie, “Shape optimization of metallic yielding devices for passive mitigation of seismic energy”, Engineering Structures, vol. 32, pp. 2258-2267, 2010.

  7. [7] R. Chan, F. Albermani, and S. Kitipornchai, “Experimental study of perforated yielding shear panel device for passive energy dissipation”, Journal of Constructional Steel Research, vol. 91, pp. 14-25, 2013.

  8. [8] Zh. Chaofeng, A. Tetsuhiko, Zh. Qiuju, and W. Meiping, “Experimental investigation on the low-yield-strength steel shear panel damper under different loading”, Journal of Constructional Steel Research, vol. 84, pp. 105–113, 2013.

  9. [9] Sh. Maleki, and S. Mahjoubi, “Dual-pipe damper”, Journal of Constructional Steel Research, vol. 85, pp. 81–91, 2013.

  10. [10] D. Teruna, T. Majid, and B. Budiono, “Experimental Study of Hysteretic Steel Damper for Energy Dissipation Capacity”, Advances in Civil Engineering, pp. 1–12, 2015.

  11. [11] Ch. Lee, Y. Ju, J. Min, S. Lho, and S. Kim, “Non-uniform steel strip dampers subjected to cyclic loadings”, Engineering Structures, vol. 99, pp. 192–204, 2015.

  12. [12] Ch. Lee, S. Lho, D. Kim, J. Oh, and Y. Ju, “Hourglass-shaped strip damper subjected to monotonic and cyclic loadings”, Engineering Structures, vol. 119, pp. 122–134, 2016.

  13. [13] Y. Kim, T. Ahn, J. Bae, and S. Oh, “Experimental Study of Using Cantilever Type Steel Plates for Passive Energy Dissipation”, International Journal of Steel Structures, vol. 16(3), pp. 959-974, 2016.

  14. [14] R. Aghlara, and M. Tahir, “A passive metallic damper with replaceable steel bar components for earthquake protection of structures”, Engineering Structures, vol. 159, pp. 185–197, 2018.

  15. [15] B. Dal Lago, F. Biondini, and G. Toniolo, “Experimental tests on multiple-slit devices for precast concrete panels”, Engineering Structures, vol. 167, pp. 420–430, 2018.

  16. [16] A. Naeem, and J. Kim, “Seismic performance evaluation of a multi-slit damper”, Engineering Structures, vol. 189, pp. 332–346, 2019.

  17. [17] M. Aminzadeh, H. Sadat Kazemi, and M. Tavakkoli, “A numerical study on optimum shape of steel slit dampers”, Advances in Structural Engineering, vol. 23 (14), pp. 1–15, 2020.

  18. [18] Zh. Zhai, W. Guoa, Zh. Yua, Ch. He, and Zh. Zeng, “Experimental and numerical study of S-shaped steel plate damper for seismic resilient application”, Engineering Structures, vol. 221, pp. 1–17, 2020.

  19. [19] D. Hibbitt, B. Karlsson, P. Sorenson, “ABAQUS user’s manual, version 6.9.”, Hibbitt, Karlsson, and Sorenson, Inc., Providence, RI., 2009.

  20. [20] J. Lu, Sh. Yu, J. Xia, X. Qiao, and Y. Tang, “Experimental study on the hysteretic behavior of steel plate shear wall with unequal length slits”, Journal of Constructional Steel Research, vol. 147, pp. 477–487, 2018.

Copyright © 2017, Accepted in 13NCCE Conference

Top